
Te
st

 &
 M

ea
su

re
m

en
t

Fo
cu

s
Practical Test & MeasurementPractical Test & Measurement

42 | March 2022 | audioxpress.com

ax

Over the decades, test and measurement
solutions for manufacturing have evolved. HP
Interface Bus (HP-IB) was born in the late 1960s
to allow test instruments and computers to be
connected together. The standard later became
IEEE 488, often known as GPIB. And while the
dominant physical interface has changed (USB
and Ethernet are common today), the concept
has largely remained the same with a widely
used Application Programming Interface (API)
eventually emerging known as VISA, for Virtual
Instrument Software Architecture.

At the core of the VISA API is a driver for
each instrument. The drivers handle mapping
the strongly-typed test API to what is usually
a loosely-typed text-based Standard Commands
for Programmable Instruments (SCPI) control
language that is sent over the physical layer.

And while the solution has worked well for
the last 30 years, a concurrent but much larger
revolution has taken place with a very similar
problem statement: What is the best way for
machines to talk to other machines in a generic
sense? That is, how does a low-energy Bluetooth

module communicate with a wearable computer?
How does an app on your phone retrieve stock
quotes from the Internet? How do you remotely
set the state of a light switch in your home? These
are all examples of Machine-to-Machine (M2M)
communication.

In a generic sense, testing a product is no
different than orchestrating an afternoon workout
on the treadmill. The treadmill is reporting incline
and speed, your watch is measuring heart rate,
pulse oximetry, and temperature. Your phone
aggregates that information, potentially adjusts
the speed or incline, encrypts it, and uploads it
to the cloud. Then it prepares a graph for you
to view in real time as you work out. Later, you
can go to the cloud via a web page, and do deep
analysis on the data you’ve collected. From there,
the sky is the limit on what can be done with the
data (Photo 1).

What is important to understand are the pieces
used to enable this seamless communication
between so many disparate devices. Once you
understand these elements, you’ll see Test and
Measurement in an entirely new light.

REST for Automated Test REST for Automated Test
and Measurementand Measurement

By

Matt Taylor

This article makes the case
for using web interfaces and
embracing web standards for
automated testing of audio
equipment, fundamentally
exploring the possibilities
of REST—which stands for
Representational State
Transfer—a widely accepted
set of guidelines for creating
reliable web APIs.

Photo 1: This is the QuantAsylum QA402 audio analyzer application, with a debug console
on top, allowing you to see the processing of each HTTP request as the requests come
across from the Jupyter application (or any application you might write). This makes
debugging automation straightforward.

Te
st

 &
 M

ea
su

re
m

en
t

Fo
cu

s
Practical Test & Measurement

44 | March 2022 | audioxpress.com

ax
What Is REST?

REST stands for Representational State
Transfer. REST isn’t standard. It’s an architectural
prescription for how the Internet is glued together.
At the core are requirements for security,
performance and scalability, uniform interfaces,
and the ability to evolve clients and servers
separately. When you retrieve a web page, you are
following the REST recipe, often known as being
RESTful. This means there’s a client and there’s
a server. Data on each server is exposed through
a URL, and that data might change several times
per second. For example, the URL:

http://localhost/temperature

will connect to your local machine and query the
temperature. And every time you call that URL, the
value returned might be different. If you wanted
to know the temperature on another machine,
you might call:

http://myWatch/temperature
or
http://myThermostat/humidity

If down the road the server API needs to
change for some reason, you can add a new API
by simply extending the URL:

http://myWatch/V1/temperature

Legacy systems can call the old URL, and new
systems can call the new URL.

The URLs I mentioned will rely on an HTTP GET
method to achieve the read. But how do you add
new data to a remote machine? That is handled
by an HTTP POST or HTTP PUT. Just as when
you fill out a form to purchase something on the
Internet, the data is encapsulated in a well-formed
data interchange format, such as XML or JSON, and
then encrypted for safe transport.

In short, the last few decades have delivered a
framework for M2M communication that is nothing
short of remarkable. It has proven extensible,
secure, robust, scalable, and performant.

The Benefits of REST
S o , g i v e n t h i s f r am ewo r k f o r M2M

communication, how can we apply it to test and
measurement? Let’s look at the various pieces
that come into play.

Photo 2: This image
shows a Jupyter
notebook using Python
and direct HTTP calls to
sweep and graph the
THD measurement of a
device under test (DUT).
The calls are made
using direct HTTP calls
for illustration. Jupyter
allows code, plots and
rich text to live side-by-
side, and is an excellent
way to document the
engineering evolution
of a product during
development. Jupyter is
a common “front-end”
for cloud computing and
collaboration. At the
bottom of the Jupyter
code window, you can
see it took 3.3 seconds
to measure THD at four
points using 16K FFTs.

Te
st

 &
 M

ea
su

re
m

en
t

Fo
cu

s

audioxpress.com | March 2022 | 45

Tools
As the M2M revolution has unfolded, a large

set of overlapping tools have emerged to help
cope with the challenges associated with M2M
communication. At the center of it all is “big-
data,” data science, and the need to process
extraordinary amounts of data pulled from a
range of disparate locations. While the amount
of data generated during test and measurement
are small by big-data standards, we can benefit
enormously from the analysis and scalability built
into the various toolsets.

Free (and open-source) tools (e.g., Jupyter)
permit an interactive environment where code,
Markdown, and graphs can all live together
(Photo 2). During development, this makes it easy
to do something, such as plot THDN vs. frequency,
change a capacitor, and run the THDN plot again,
all while annotating your development journey in
a rich-text markdown language.

Debugging tools (e.g., cURL) make it easy to
create and debug complex M2M sequences if you
are developing factory tests. And legacy tools
(e.g., Matlab and LabVIEW) know how to speak
REST already.

In short, the tools, ranging from development
to deployment, are mature and pervasive, and
often free. This becomes particularly important
as manufacturing must scale.

Developers
Deve loper s that under s t and tes t and

measurement (GPIP, the interfaces, and the
specific tools) are rare. It’s a specialized skill that
doesn’t have much applicability outside of the
factory realm. But M2M communication via REST
is widely understood. Whether you are querying
inventory from a supplier or handling credit-
card processing, it’s usually done through REST
principals. And most developers understand it

About the Author
Matt Taylor holds a BSEE and is the president of QuantAsylum
USA LLC, an audio test and measurement provider. Prior to
QuantAsylum, he co-founded the Taiwanese electric scooter
company Gogoro where he served as CTO. Before that, he
worked at Microsoft, Motorola Cellular, and HTC. A lifelong
musician, he fell in love with audio when he first entered a
recording studio in the 1980s.

GaN-based amplifiers and power supplies result in a high

performance, low cost system without a fan, heat sink, or

active cooling. GaN audio benefits include 10X better

THD+N, 20dB better Noise Floor and 5X better Frequency

Response – resulting in superior audio quality in smaller

form factors.

GaN
Class-D Audio

Learn more at gansystems.com/audio

REDUCTION IN
POWER LOSS

4x
REDUCTION IN
AUDIO JITTER

10x

Te
st

 &
 M

ea
su

re
m

en
t

Fo
cu

s
Practical Test & Measurement

46 | March 2022 | audioxpress.com

ax
very well. Asking a developer to query data from
a remote source via HTTP is a trivial task.

Languages and Environments
Languages such as Java, C#, and Python have

also evolved. Making an HTTP GET or PUT or
POST from a modern language is straightforward.
There are no libraries needed, no new interfaces
to learn, and no drivers. The operation, regardless
of the underlying operating system is the same.
On the QA402 Audio Analyzer, for example, if you
want to know the THD of the last acquisition you
made, with fundamental at 1kHz and a 20kHz
bandwidth, you can type the following in your
browser (or call from a program):

http://localhost:9402/ThdDb/1000/20000

And a JSON document is returned:

{
“SessionId”:”3307217056”,
“Left”:”-91.7134518113503”,
“Right”:”-94.3172168407987”
}

A JSON document is simply a collection of
attribute-value pairs. We can see the left channel
distortion was -91.73dB.

To request the distortion reading in Python
would appear as follows. This line below is sending
the HTTP request, and then asking for the value
of the “Left” attribute in the returned JSON
document. That value is a string, which is then
converted to a float. Again, this is using standard
language features. No drivers, no DLLs:

ThdDbLeft =
float(requests.get(‘http://
localhost:9402/ThdDb/1000/20000’).
json()[‘L eft’])

Of course, you’d want to abstract the calls shown
above to give a layer of type-safety to the operation.

Performance and Scalability
An HTTP GET as shown for THD takes just a

few milliseconds to complete. Even for large data
structures the performance is very good. Requesting

acquisition spectrum data (64K left channel and 64K
right channel = 128K 64-bit doubles) data takes just
40mS or so. That’s largely because performance and
scalability have driven the design of the Internet
from the beginning, and languages such as Java
and C# have followed suit. But it doesn’t stop
there, as these languages have pushed further
into advanced concepts such as asynchronous
programming, which is a type of coding where the
developer gets the performance gains associated
with asynchronous calls without having to worry
about the code overhead of callbacks. Asynchronous
programming also makes it easy to parallelize a
range of tasks. Modern programming languages
have treated parallelization as a very important
task, and as such there is strong language support
for these important architectural elements.

In shor t , you can submit a range of
measurement requests via HTTP before a single
request has completed, and process them as they
become available. And this can be done with code
that is easy to write using modern languages.

Portability
With some planning, modern tools can allow you

to seamlessly move a test environment from, say,
Windows to Linux. You can develop in the lab on
Windows or Mac and deploy to the manufacturing
line onto low- cost Linux machines. Cross-platform
applications are becoming increasingly common,
and REST helps makes the transition seamless.

Virtualization
Docker is a software platform that relies

on OS-level virtualization to deliver a software
solution in a container. Docker exists to ease
deployment of complex systems and allow
environments to be evolved separately from
each other. Each container is isolated from other
containers, and every container can run different
versions of key system libraries. Containers are
small, usually needing just a few hundred MBytes
of system resources. Running 10 containers or
more on a single machine is common.

Docker allows you to set up an environment on one
machine and move that exact environment to another
machine AND run it alongside another container that
has a completely different environment. For example,
you might have your Product A factory test running
in Java version X, and your Product B running in Java
Version Y and your Product C running in C# version Z.
Think of a very lightweight Virtual Machine.

You can get the tests running at your desk,
and then deploy the container to your factory and
run it on the same machine that is testing another

References
“Project Jupyter,” Wikipedia, https://en.wikipedia.org/wiki/Project_Jupyter

 J. Somers, “The Scientific Paper Is Obsolete,” The Atlantic, April, 2018,
www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676

Te
st

 &
 M

ea
su

re
m

en
t

Fo
cu

s

audioxpress.com | March 2022 | 47

product. The two test environments can be very
different. And yet, they run alongside each other
completely independently.

Debugging
The tools available to debug M2M communications

are mature and pervasive. Some of the most potent
are built right into your browser. But stand-alone
apps (e.g., cURL) make it easy to see and understand
every aspect of the communication, with detailed
logs and timing. Understanding why a M2M session
failed is straightforward.

Backward Compatibility
So, the capabilities might sound great. But

how would legacy systems be addressed with a
new approach? The answer is they’d be pulled in
and used as they are today. For example, if you
absolutely had to control a legacy piece of test
equipment from a modern REST-based approached
to factory testing, you could pull in the DLL that
permitted you to control the legacy equipment
in your new app. You’d probably risk some of the
cross-platform compatibility at that point. But it’s
a reasonable trade-off.

Conclusion
Testing is, at its core, machine-to-machine

communications. And some serious innovation has
occurred in this area over the last two decades,
fueled by the same standards and protocols that
power the Internet.

Is it time to throw away the legacy systems
and start over from scratch? Probably not. That
ship is large and will need lots of time to turn.
The investments in test systems are enormous
and time is always tight when shipping a product.

But the gains to be had from state-of-the-art
software (languages, analytics, and cloud storage)—
much of it open source—are very real. Rather than
thinking about test and measurement as a unique
problem requiring unique skills and tools, think of
it as the same distributed machine-to- machine
communication that runs the Internet.

From this new vantage point, your test team may
very well venture in a new direction for their next-gen
testing solutions. And fast, low-cost, easily deployed
containers that perfectly replicate your engineer’s
desktop environment are the outcome. And you can
deploy several of these containers into your factory
onto low-cost test bays running Linux. ax

203-502-7600

Consultation • Analysis • Sales
We represent and utilize Klippel and Microflown products,

the most sophisticated analysis and measurement
equipment available.

www.warkwyn.com info@warkwyn.com

Contact Warkwyn Today to Learn More!

