
1

I2C Keyboard Controller

How to build an Intelligent I2C keyboard controller for Flowcode 7 Projects,

extendable to 80+ keys.

2

Build an Intelligent Device &

The FC7 component to Control it

Developing embedded systems can result in some devices taking up a lot of resources

such as I/O ports and/or program time to control them. One such example, that is often

encountered, are keyboards. Lots of digital connections and program time to scan and

decide which keys have been pressed. See Appendix B

I want to show you, how you can take a micro-controller and program it to fulfil a

specific repetitive function, that will enable it to be used as a specialist device for a

FC7 project - a keyboard – the device has the functionality, the component does not.
See Appendix B

This approach could also be adapted to fulfil any other repetitive task that you can

think of. (invention is limited only by your own imagination)

Using dedicated controllers, frees up valuable resources on your project (program

memory and I/O pins) by doing the donkey work for you. Once you have built your

specialist device, you can then build a Flowcode component to communicate with it.

You are then able to concentrate on your project to do the more important stuff that

you require. Flowcode is a powerful development platform, that will enable

Mechatronic Engineers to build Intelligent devices capable of performing endless

possibilities of specialist modular devices, that you simply plug into your main design

project.

Consider this device – PCF8574 I/O expander

This device looks ideal for a keyboard. It allows you to add extra connections that you

can access via the I²C port. The problem is, it has no intelligent functionality at all.

Your project MUST still do all the donkey work.

What about this one – TCA8418

It has the best of both worlds. Fewer connections and some functionality. The problem

now is, it may not have the required number of I/O’s and/or functions or keys.

3

So, what do you do?

This tutorial will demonstrate how to build:

• An Intelligent I2C Keyboard Controller (expandable to full 80 plus

keys, you even get to write its specification)

• A FC7 Component to control this new Device

This illustration shows you what is involved – from a Mechatronic Engineers
perspective. You will Build: -

 The Device FC 7 Component

 You make it! (on a PCB) You Build - the FC7 Component to control it.

 You have the
 I2C Communication/

 Connection
 you want

 Using a - PIC18F2455 (or other MCU) FC7 I2C-KB component

Of all the digital controllers on today’s markets, they are designed to perform various

functions such as; input/output expanders; LCD display controllers; flash memory

controllers; ethernet bridges etc. What they have in common, they all probably started

life as a standard microcontroller produced by companies such as Microchip.

Engineers, design devices using these standards microcontroller parts, to build

intelligent digital devices, that you connect to make complex embedded systems, and

then give them a unique name.

This tutorial will help you to design and build an intelligent device, that you have

programmed yourself to fulfil a specific function, using standard Microchip parts.

Now you get to build your very own Intelligent controller - a keyboard controller. You’ll

program it, then connect it to your project using your very own Flowcode component.

This technique is not new. Modern computers are full of smaller specialist

microcontrollers, programmed to fulfil repetitive functions, that frees the main CPU to

get on with the more important stuff. Furthermore, you can repeat this for any other

repetitive tasks.

4

STAGE 1 – The Device (I2C Keyboard Controller)

STEP 1

We’ll begin by looking at a typical requirement of most embedded controllers such as

an industrial PID controller or CNC machine controller. They need some form of

human interface such as a keyboard to input data. WE know they take up a lot of I/O

pins and program memory to work efficiently. Therefore, it would be better to give this

repetitive task to a dedicated keyboard controller. One that you have designed and

built yourself. Now you will know exactly what is going on inside this controller and

better understand how to communicate with it.

The routine to scan the keyboard will remain pretty much the same. Only changing

when more keys are to be scanned or scan speed to be increased; key buffers added

etc., increasing the options available to you. This only leaves the choice of Microchip

or other controller to be used, hence your devices specification. Your choice!

Here is the device you are going to build – a starter 4x4 16 key keypad controller, a

basic starting point to begin with. It can be developed to handle up to 40+ keys.

Change the controller and scan routine and you can extend this further to 80 plus keys.

Introducing your: MAT2455-I/P 16-42 key Keyboard controller for I²C Bus

Well, it’s a PIC18F2455 -I/P. You are going to program it to perform the functions of a

keyboard controller. If you were a company, you would get to name it and sell it,

provided you have a FC7 professional license. I’ve called this one MAT2455-I/P. Once

you have selected/modified the code to be loaded onto the chip to suit your needs,

you can call it whatever you want. I have used ‘MAT’ to designate it belongs to

MatrixTSL and I/P for ‘through-the-hole’ technology. It makes building options more

accessible. The 2455 is from the Microchip family of MCU’s, or you could find an

alternative if you wish, if you have the relevant FC7 chip packs.

MAT2455-I/P

VCC

SDA

SCL

Reset

ROW 1 - 4

Column 1 - 4

GND

5

STEP 2 – The Keyboard Controllers Program

The keyboard controller program has two parts

1. The I²C Communication Function Protocol – (thanks go to Ben & Leigh at

MatrixTSL)

2. The Keyboard scan routine

This basic routine has only four columns/rows that can be extended to include more if

you wish – 4x4/16 keys or up to 80 keys with a different MCU. Each column starts with

one output being turned on whilst the others remain turned off, then checks to see if

any of the inputs has gone high as the program steps down that column. Switch de-

bounce is firmware controlled at the master I2C end. We know which key-switch is

connected to each column-row configuration. Therefore, we can say exactly which key

on the keyboard has been pressed within that column. That enables us to decide what

that key does or represents. Is it a ‘HEX’ value or an ASCII value, you choose whist

you have the routine loaded in FC7. We store this result in a ‘Byte’ variable that can

easily be transferred to your project using the I²C protocol. It is up to you how far you

wish to develop this design.

The Scan routine is stored in a macro that is called from the main programs ‘super-

loop’. The reason for this, the I²C service protocol MUST reside in the main loop, as

any calls will push results onto the stack and must not become corrupted or over-

written. In other words, it is at the beckon call of your projects Master controllers I²C

port (SCL) clock. When the master calls, your keyboard controller must respond

quickly, with a result of any key pressed, or a special return value to indicate – its

STATUS (150 - ok but no key pressed). Anything else (255) – (fault – trigger a restart

request).

Let’s have a look at the keyboard program in detail. It takes under 1ms to complete a

full scan including checking to see if the master I2C controller has called. That meets

current modern keyboard poll times - <5ms. We need to perform tests such as

diagnostic testing to ensure that the data is correctly stored in the variables, then use

code profiling to check for efficient code.

Here is the result from a pocket - field testing scope. I had connected a probe to one

of the column outputs and captured the pulse generated. Every pulse indicates the

loop has completed a full cycle – scan the keys and test for master I2C call (approx.

0.2ms/complete cycle for 16 keys scanned).

Note! – All four columns are scanned before returning to the main loop.

The scope also indicates how the

switching is performing. Without ‘pull-

down resistor’ the outputs would not be

turned off correctly giving false positives

at the row inputs. It should be a nice

square pulse.

 0.2ms complete cycle

6

Take time to study the scan routine using FC7. The scan routine is called from the

main loop, it checks to see if a master call has been made first. Then the scan routine

is started. From the top, the following variables are set.

- Column = 0 (increments by 1 every time a column has been done)

- Key_pressed = 150 (sets the return code to enable the master to check if no

key pressed but the slave is still running OK. If master calls, it gets told 150 no

key pressed, otherwise the ascii code is sent)

- Key_detect = 0 (set when a key-press has been detected, stopping the scan

and jumping out of the loop. Improves speed and efficiency).

Let’s have a look at the programs column structure.

7

First, we turn ON an output. Do not use a led for

an output on the Dashboard Panel. The logic

operations do not like it – errors will result! Why, it’s

to do with the hardware on the chip. It requires

‘weak pull-up’ resistors turned on for the I2C to

work on the B port – LED’s conflicting with the

I2C port!

Second - check each input for logic level and

assign to a variable – row1; row2 etc

LOGIC - We know, that whilst we are in this column,

any input found (the variable will store as a 1 or 0),

to be high or low, due to the switch matrix that will

correspond to a specific switch being pressed.

The switches in column1 are – 1; 4; 7; *

ASCII – 49; 52; 55 and 42

The decision checks the logic value for each rows

variable, if true, then assign the appropriate ascii

value for the key_pressed variable (this over-

writes the 150), ready to be transferred by the I2C

port. The variable is stored and carried out of the

macro back into the main routine safely.

Turn off the column output.

Now some time saving. If a key is pressed, why

continue to the end of the scan? It will be much

more efficient to stop scanning now, we have found

that a key that is pressed and therefore we can

return to the main routine.

Finally, reset the column and key_detect

variables before exiting the macro. This will enable

the next scan to begin as normal.

All the other columns will be the same functionally, but different columns outputs

turned on and ascii values assigned for the keys pressed.

8

STEP 3– I2C Protocol – Thanks go to Ben & Leigh at MatrixTSL

The FC7 component used here is the one provided as part of the ‘Comms’ pack – I2C

slave. Building a device using this method of communication can be difficult due to the

high frequency, EMI – Electromagnetic Interference on the HF radio frequency band

(100kHz). Wires must be as short as possible or kept well apart from each other.

Capacitance is our enemy.

DO NOT twist cables together from the output.

Short single solid core wire is ok but for optimum performance use mini RF cable (mini coaxial). This is where the outer screen

has an air gap insulator to kill the capacitance between the solid core and the screen. It is possible to transfer data over 1k metre

using a driver such as – P82B96 Dual bidirectional bus buffer and eliminating many of the above problems.

When using Microchip ‘PIC’s’ it is necessary to include this ‘C’ code to enable the
internal weak pull-up resistors. You must also include external ‘Pull-Up’ resistors of
the value range – approx. 2k to 10kΩ

The main loop comprises the following:

Status – this checks the I2C

hardware. If a master I2C call has

been made the internal status

register will be set as follows: -

 Bit 0 = 1 Indicates address/data byte

available in the buffer to read

Bit 5 = 1 Indicates that the last byte

received or transmitted was data

(else address)

- 0x21 hex value (Bit 5 & 1 are

set)

If this status macro returns with

this value 0x21, the Switch

directs the program flow to =1

position

In other words, the master is

waiting for data from the slave.

The slave does not and cannot

drive the SCL clock. Only the

master oversees the clock.

Therefore, the master drives the

clock line and the slave outputs

the data in sync with the clock.

You are NOT allowed to write to

or read from the register whilst

this is happening. Any attempt to place data in this output buffer during a data transfer

will result in stalling the I2C hardware. All the clever stuff is going on in these two

9

macros produced by MatrixTSL. The switch=2 is for catch all other possibilities –

prevents errors.

The status macro – there is a lot going on

within this macro. It reads the internal I2C

port status register called – SSPSTAT

bit 0 BF: Buffer Full Status bit
In Transmit mode:
1 = SSPBUF is full
0 = SSPBUF is empty
In Receive mode:
1 = SSPBUF is full (does not include the ACK and Stop bits)
0 = SSPBUF is empty (does not include the ACK and Stop bits)

bit 5 D/A: Data/Address bit
In Slave mode:
1 = Indicates that the last byte received or transmitted was data
0 = Indicates that the last byte received or transmitted was

address

Returns the value in the variable - status

The keyboard I2C device must respond quickly to deal with the master request poll

time. Most modern keyboard have poll time 5ms or less.

The data from the key_pressed variable is handled by the macro – TransmitByte

Once the status has been processed and

found to have valid address data, the status

BITs are set, allowing the switch to route the

program flow. This next macro begins

transmitting the data to the master

controller. The component we have

designed is expecting only one byte of data,

therefore, our keyboard controller conforms

to this protocol.

Exiting this macro, we must reset the status

variable to zero to ensure we read the next

request from the master correctly.

10

The I2C Bus
The I2C bus consists of two wires connecting each device together on the bus. These

lines must be held high, using resistors of the correct value. To calculate the resistor

values, it is advised to follow the correct I2C standards.

 SDA

 SCL

The temptation to put pull-up resistors on each device MUST be avoided, as this would

effectively create a parallel resistor value, much smaller than may be allowed.

The maximum load an I2C device can switch at its output is 3ma for 5-volt devices.
Therefore, we must ensure that the resistor provides the correct current vs
capacitance (below 3ma load resistance).

Note! Fast and Standard modes are 400kHz & 100kHz

Think of it this way. A capacitor is like a storage tank. The bigger the tank, the longer

it takes to fill it. If the wires you are using have a lot of capacitance measured in pF

(picofarads), then the fast switching of the outputs takes time for the voltage to rise

and fall. The graph on the left shows – (1 – standard mode 100 kHz) small capacitance

allows higher resistor values. The graph on the right (1) – shows VDD voltage means

smaller pull-up resistor values to achieve 3ma. From this we can use this calculation

as a good starting point.

 Resistor value = VDD minimum – 0.4 volts ÷ 3ma

Device 1 Device 2 Device 3

+5 Volt

R1 R2

11

There will always be some capacitance in your design, so you can assume VDD

minimum to be less than the VDD power rail. This is because, when switching begins,

the pull-up resistor never quite reaches their full voltage until the switching has

stopped. Therefore, for a 5-volt supply rail, we assume VDD minimum to be 4.5 Volts.

This gives us the following numbers:

Minimum Resistor value = 4.5V – 0.4v

 0.003 (maximum current allowed)

 = 1366Ω or minimum of 1.5kΩ on E24 series

Therefore, 2kΩ is an acceptable absolute minimum to begin testing. You can increase this if you have

low capacitance in your design.

STEP 4– Keyboard Circuit Design

The circuit is designed around a PIC18F2455 I/P controller running at 16MHz – parts

list is included in the appendix. I have allowed the design to accommodate up to 6

columns and 7 rows giving - 42 key keyboards. The pull-down resistors 10kΩ must be

included to ensure reliable operation.

12

The transistor is used to reset the keyboard controller when connected to your projects

via FC7 keyboard component. It can be called from within the FC7 component -

I2C_KB.fcpx.

The PCB is a little bigger than necessary to allow for through-the-hole components to

be accommodated. If SMD were used, it would be much smaller. I have included all

the necessary files, as a download.

STEP 4– Keyboard Component – I2C_KB.fcpx

Once you have completed building the keyboard controller

hardware, begin building the FC7 component. The properties

available are:

Channel hardware or software

Baud rate 100kHz; 400kHz &1MHz

SCR Slew rate control

KB_Reset

Address range 0x54 & 0x55

Mask True (1); False (0)

The component has been tested using the Microchip

I2C hardware successfully at 100kHz. The address is

available for you to change within the project for

component creation, allowing changes to suit your

requirements. The slew rate control feature, enables

the I2C hardware to adjust the baud rate by monitoring

the rise and fall time of the clock, remember that

capacitance problem! It tries to overcome some of the

problems it causes. The mask enables ONLY the

correct address to access the device.

The reset pin allows your project to reset the keyboard

controller, should a problem with the I2C

communication occur (returned value = 255). Using the reset macro, will make the

simulation LED flash. All this is handled from with the component creation.

13

STAGE 2 – Keyboard Component Creation

STEP 1

You begin by starting a new project. It is not necessary to select a particular controller,

it is the embedded macros and their properties that are stored in the component file

when finished. See Appendix B

The screen looks something like this when you begin. From left to right:

Project Explorer; Component search; 2D Dashboard panel; System Panel; Properties

Panel

The Project Explorer – lists all the Events that will be associated with your finished

component. A Flowcode 7 simulation event is similar to an Interrupt but aimed at

performing a specific job. This is not just what you see on the screen but what may be

downloaded onto the chip. Example, some devices require they are initialised, i.e.

sent command codes to get them going. This is where you set them up. Looking down

the list, and there are many, select Initialise under the heading components. This is

necessary for the component we are using – a base CAL I2C. You will find this by

using the component search feature in the next panel.

Component Search – never sure where to find what you are looking for? The search

tool makes finding what you want easy. Find the CAL I2C base component and place

it onto the 2D Dashboard Window.

System Panel – All the communication/functionality required for the keyboard

component will be developed here, in order to control the keyboard device you have

just built , from within your project.

Properties Panel – The component is built by you using macros in the workspace

window. You simply drag, whichever FC7 icons from the tool bar, onto the workspace

to build the functionality you require for the component, just as you would for any other

project.

http://www.matrixtsl.com/wikiv7/index.php?title=Interrupt_Icon_Properties

14

STEP 2

You should now have the base CAL I2C component placed on the 2D Dashboard.

Close the component search panel to give yourself more space to work with.

From the Project Explorer <EV> – select

Initialise

From the dropdown menu select – edit and

then select Add new

You will be presented with the second box

called Edit Macro details with the title called

– EV- Initialise with the Return type -

ULONG

Click OK

You can now close the project explorer

window.

This event will setup all of the links to make your component I2C communication work,

once it is exported as a finish FC7 component.

STEP 3

Over on the other side – the Properties Panel, are the keyboard component properties

that need to be set up, with the connection pins named (these will be written to the

EVENT Property). If you click anywhere within the 2D Dashboard Panel now, will show

the current components properties are empty. What you are about to do, is give the

Keyboard component the necessary links to Initialise the functionality you require –

the properties and digital pins, to connect your project to the keyboard controller.

It is very important to remember, without the components properties set up first, you

will not be able to start using the FC7 flowchart icons and macros as nothing exists

yet for them to control.

These are the properties we require:

• CHANNEL

• BAUD_LIST

• SCR
These are the connections we require:

• SDA

• SCL

• KB_Reset

The I2C Keyboard Address:

• Mask

• SlaveAddress

15

STEP 4 – Properties Panel

You will notice under the heading Properties are the headings for each sub category.

Set them up as follows:

From the pull-down menu select – New Category

Give it a suitable name (Bus Settings), then ok.

Now you can add each of the properties for this group.

Select add new and complete each box as show below.

CHANNEL BAUD_LIST SCR

16

Next, New Category - Connections

SDA SCL KB_Reset

Next, New Category – Keyboard Address

 Mask SlaveAddress

NOTE – the address contents are the decimal values for the I2C address to be used

by the Event – Initialise be careful!

17

Now for those Macros

STEP 5 – Macro - (Ev_Initialise)

There are five macros for this component:

Ev_Initialise; Main; Reset; Ket_Key_Pressed; Initialise

The first two icons, ensure the keyboard

image displays correctly. Future releases of

this component may remove these two

macros.

This macro is used to

develop the functionality we require for our

component. The Flowcode 7 API, uses it to

link everything together, not just to simulate

the on-screen graphics. We will be using it a

lot. It is like writing the #C code we need,

made simple.

The variable used is a local variable called -

.tempstring. It is used to carry the linking

data from the base CAL I2C to our

component. We MUST use this variable in a

very structured way. We must do one linking

event at a time until that event is finished

BEFORE starting another. Otherwise

information/data will be lost.

18

Lets have a closer look at the above EV_Initialsie event

Example ‘CHANNEL’ – The information/data flow is as follows;

1 Get_List from CAL to .tempstring

2 Set Filter for Component ‘CHANNEL’ data from .tempstring

3 GetValue – for CHANNEL from component to .tempstring

4 SetValue – for CHANNEL to CAL from .tempstring

2. Component 3. Component
 user makes changes
 to achieve correct settings

1. Base CAL I2C 4. Base CAL I2C

This shows we need four simulation icons to complete the necessary data transfer.
When the component is placed into a project, any changes the user makes are
automatically transferred back by FC7 API, to the base component and the MCU set
by the user. It is therefore – Dynamic! The base component MUST NOT be in a
different state to your component.

 1 2 3 4
Get List from CAL Filter out CHANNEL GetValue from component Changes Set changes to CAL

19

We do this, for setting the base CAL’s: (repeat for BAUD_LIST & SCR)

• CHANNEL

• BAUD_LIST

• SCR

• SDA

• SCL

• Slave_Address

• Mask

Repeat the above steps for all of the other component settings

listed above.

Note - The KB_Reset pin is handled in a unique way as you will see later.

However, if the channel is set to software it is necessary to allow different pins on the

project MCU to be selected. This is achieved using a switch function for:

SDA

SCL

Study the FC7 device

project to familiarise

yourself with devices

functionality. This

method is repeated for

many of the

communication macros

used in flowcode!

This action applies to the SDA and the SCL pins as shown above. When the user

selects different pins to be used, Flowcode API needs to know where to route the data

back to the base CAL_I2C.

20

Now do the four linking simulation macros for the:

• Slave_Address

• MASK

This leaves the properties to be set-up for:

•

21

STEP 5 – Macro (Initialise)

Now we begin to set up the component macros for the user to download into their

projects. However, The Ev_Initialsie shown above will be hidden.

First Macro - Intialsie, we use this component

macro to Initialise the base Master I2C CAL port.

Select – Master_Int

This will ensure that the project is correctly configured to set the base CAL as

MASTER with all the correct setting you have included in the Ev_Intialise event are

included.

Remember that pin we have allocated for the reset –

KB_Reset

The variable is called KB_Reset

Whichever pin the user has selected for the connection on their MCU for KB_Reset,

we activate that PIN as follows. The variable assigned to the pin is called – KB_Reset.

22

• if we give that variable a value of = 0 the output is low

• If we set the variable a value of = 1 the output goes high

The icon used to achieve this is an equation icon as shown here.

Now we have controlled how the Keyboard device is setup during

the initialisation period – i.e. the master is up and running first

before the slaves I2C port starts.

STEP 5 – Macro Reset – called by user if an error occurs

On the keyboard component a Simulation LED has been

placed. It will flash when the Reset function is called by the

Reset macro.

Use the component search to find the Simulation LED.

Use the equation icon to set the output for the

KB_Reset PIN. OUTPUT = 0

When you place the simulation icon you will be able to

set its value

23

STEP 5 – Macro (Get_Key_Pressed)

Use the base CAL I2C macros to obtain the correct

functionality for transferring data from the keyboard

controller to the user’s project.

It I2C protocol always begins with

• Start

• Master Transmit address of slave device

• Receive byte .Return variable

• Stop

MatrixTSL have developed the I2C protocol macro to function

correctly.

Not always easy to remember the correct sequence, therefore our component does it

all for you!

Please use and view the projects in conjunction with this guide. It will help to answer

any question that are not given here.

STEP 5 – The Keyboard Components Graphics

The component graphics are built up using simple shapes

available under the tools menu. Here is a list of what I have

used to construct this keyboard graphic.

• Rectangles x 2

• Label x 3

• Simulation LED x 1

• Image of 4x4 keypad placed onto

second rectangle

24

STEP 5 – Export Keyboard Components settings

Make sure you give the component ‘Handle’ a suitable name.

This will be the name given to the component during export.

Start by placing two rectangles onto the dashboard Panel. The

largest one to place the labels and LED. And another one just

big enough to place the jpeg keypad image. This is necessary

as the image will be forced to fill the rectangle holder it is placed

onto.

The labels are a matter of taste.

From the File menu – open the Component

Configuration.

This brings up the Component Management

Interface. Complete the field entries to suit your

requirements for – Standard

The Advanced TAB, ensure you give the component

a unique – GUID by selecting edit and NEW.

25

You may need to add the location of where the image

used for the keyboard is located as shown (route

folder for component).

Finally, from the File Menu, select Export component to your ‘Component Library’.

What you build yourself, you now know how it works!

26

Appendix A

Keyboard Controller – MAT2455-I/P

Part Value Farnell Order No.

C1 100nF 9411887
C2 22pf 9411674
C3 22pf 9411674
JP1 COL_con1_6 Pinhead connectors
JP2 ROW_con1_7
JP3 PWR 1X02
JP4 I2C_Con 1X03
Q1 16Mhz HC49U-V 1611761
R1 10k 9342419
R2 10k
R5 10k
R6 10k
R7 10k
R8 10k
R16 4.7k 9343253
R17 2.2k 9342834
T1 2N3904 TO92
U1 PIC18F2455-I/SP 1579600

Appendix B

A Component can be anything that is self-contained, for example:

▪ An electronic device

▪ A measuring instrument

▪ A packaged simulation

▪ An extension to the system

▪ A library of useful macros

The Flowcode 7 component contains all the macros in one package. It will enable your

project to communicate with a device. Some macros can simulation an activity such

as communicating with the device.

http://uk.farnell.com/raltron/as-16-000-18/crystal-16mhz-18pf-hc-49s/dp/1611761

